

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Hydrolytic and Radiolytic Degradation of Oqd(iB)Cmpo: Continuing Studies

K. L. Nash^a; R. C. Gatrone^a; G. A. Clark^a; P. G. Rickert^a; E. P. Horwitz^a

^a Chemistry Division, Argonne National Laboratory, Argonne, IL, USA

To cite this Article Nash, K. L. , Gatrone, R. C. , Clark, G. A. , Rickert, P. G. and Horwitz, E. P.(1988) 'Hydrolytic and Radiolytic Degradation of Oqd(iB)Cmpo: Continuing Studies', Separation Science and Technology, 23: 12, 1355 – 1372

To link to this Article: DOI: 10.1080/01496398808075635

URL: <http://dx.doi.org/10.1080/01496398808075635>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

HYDROLYTIC AND RADIOLYTIC DEGRADATION OF O₂D(iB)CMPO: CONTINUING STUDIES

K. L. NASH, R. C. GATRONE, G. A. CLARK, P. G. RICKERT, and E. P. HORWITZ
Chemistry Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA

ABSTRACT

The hydrolytic and radiolytic degradation of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tetrachloroethylene (TCE) and in tributylphosphate-TCE mixtures (TRUEX process solvent) in contact with HNO₃ has been investigated. Gas chromatographic analysis of the degraded solutions has allowed identification and quantitation of a variety of organophosphorus degradation compounds derived from CMPO. The effect of degradation of the extractant solutions on the extraction and stripping of americium has been addressed, as has the effectiveness of Na₂CO₃ scrub procedures for restoring extractant performance. Extrapolation of these results to normal process application conditions indicates that neither hydrolysis nor radiolysis should compromise the americium extraction performance of TRUEX-TCE.

INTRODUCTION

The hydrolytic and radiolytic degradation of CMPO (octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide) has been reported in two prior reports from this laboratory (1,2). In the first of these investigations (1), the concentration of CMPO in degraded TRUEX process solvent (0.25 M CMPO - 0.75 M TBP-CCl₄) was calculated assuming third power extractant dependency in the decreasing distribution ratios for americium (D_{Am}) from 2.0 M HNO₃. The conclusion of that study was that CMPO apparently has

considerable resistance to radiolytic degradation, as distribution coefficients did not decrease greatly with absorbed dose.

In the second study, the hydrolytic and radiolytic degradation of CMPO in CCl_4 (no TBP present) and in decalin was investigated (2). Capillary gas chromatography was used in the analysis of the degraded solutions to determine the concentration of CMPO at a given sample period, but detailed quantitative analysis of degradation products was not reported. Gas chromatographic analysis indicated that the actual concentration of CMPO was lower than the assumption of third power extractant dependency in D_{Am} suggested. It was shown that the degradation product methyl(octyl)-(phenyl)phosphine oxide ($MO\phi PO$) could partially replace CMPO in the extraction cycle to compensate for the reduced concentration of the primary extractant.

In view of our incomplete understanding of the system, we considered that further investigation of hydrolytic and radiolytic degradation of both CMPO and CMPO-TBP mixtures utilizing more specific quantitation of CMPO, TBP, and their degradation products by gas chromatographic and mass spectrometric analysis was indicated. In addition, CCl_4 has been replaced by tetrachloroethylene (TCE) in TRUEX flowsheet because of excessive evaporation of the former. As a result of the diluent change and the need for more complete quantitative data on rates and mechanism for CMPO degradation, we have completed a third investigation of this system.

Our objectives in this study are:

1. To identify and measure concentrations of CMPO and TBP hydrolytic degradation products in a biphasic system (the aqueous phase is nitric acid) under conditions which exceed the severity of presently anticipated applications.
2. To perform identical experiments in a radiation field.
3. To correlate hydrolysis and radiolysis results to identify probable degradation pathways for CMPO and to derive information on the rates and mechanisms of CMPO decomposition.
4. To correlate the concentrations of identified species with D_{Am} in degraded solvent.
5. To assess the effectiveness of aqueous sodium carbonate solutions as a solvent cleanup reagents.

EXPERIMENTAL

$O\phi D(iB)CMPO$ was purchased from M&T Chemicals, Inc. as an off-white, crystalline solid of nominal 98% purity. For most of the experiments this material was further purified by the MIX procedure (3) and then recrystallized from hexane. The resulting white crystalline material was shown by capillary gas chromatography and ^{31}P NMR spectroscopy to be greater than 99% $O\phi D(iB)CMPO$. Tri-

butylphosphate (TBP) was purchased from Eastman-Kodak as a 98% pure liquid and purified by the usual alkaline wash procedure. Tetrachloroethylene (TCE) was either Aldrich Gold Label or HPLC grade solvent. Nitric acid solutions were prepared in deionized water using Ultrex HNO_3 .

Degradation studies were performed under the following set of conditions:

temperature = $50(\pm 0.1)^\circ\text{C}$
[HNO_3] = 5.0 M , 2.5 M , 1.25 M (initial system total acidity)
initial volumes (each phase), 50 ml
equilibration time (hydrolysis); 12 weeks
irradiation dosage (radiolysis); 68 Wh/L.

The organic solutions investigated include:

0.25 M CMPO - TCE
1.0 M TBP - TCE
0.25 M CMPO - 1.0 M TBP - TCE (TRUEX process solvent).

These solutions were prepared by weighing the appropriate quantity of extractant and diluting to volume. Jacketed Pyrex reaction vessels were equipped with reflux condensers to minimize evaporative losses and were stirred with magnetic stir bars for intimate phase mixing. The irradiations were done in the ANL Chemistry Division ^{60}Co Irradiation Facility at a dose rate of 0.3 to 1.0 Mrad/hr. Absorbed dose was measured by cobalt glass dosimetry.

Hydrolysis experiments were run for 12 weeks with samples taken at two week intervals. Samples of the radiolyzed solutions were taken at 9.0, 16.0, 32.0, and 68.0 Wh/L total dose. At the sampling interval stirring was stopped to allow phase separation and 3-5 ml samples of the organic phase were taken. This sample was split into two equal portions. The portions were subjected to either water wash (to remove HNO_3) or 0.25 M Na_2CO_3 scrub followed by water wash (to remove HNO_3 and acidic degradation products). The scrub solutions were acidified with HNO_3 and the organic components extracted into CHCl_3 . The CHCl_3 was subsequently evaporated off and the solids redissolved in a known volume of TCE. Aliquots of this solution were combined with an equal volume of the original washed solutions, diluted by a factor of 20, and derivatized with diazomethane (CH_2N_2) to convert acids to methyl esters required for gas chromatographic analysis. The scrub solutions were also derivatized and analyzed by gas chromatography. Separate aliquots of the non-derivatized organic solutions (without the scrub-extract portion of the solution) were used for the determination of D_{Am} from 0.01 M and 2.0 M HNO_3 .

The capillary gas chromatographic analysis was done on a Hewlett-Packard 5890 instrument equipped with a flame ionization detector. Peak integration was performed by a Hewlett Packard 3390A computing integrator. The column was a 0.25 mm x 15 m fused silica, DB-5 bonded phase column. Helium was the carrier gas. The chromatograph was run in the temperature program mode with the program: 100°C for 1 minute, increased 10°C/minute to 260°C then held at 260°C for 9 minutes. Species were identified by comparison of retention times with standards or by GC-MS. Mass spectral data were recorded on a Kratos MS 25 spectrometer at an ionization voltage of 70 eV. Gas chromatography-mass spectral data were obtained using a Hewlett Packard Model 598 at 70 eV with speed software.

In the analysis of degraded TRUEX solvent, an internal standard was found to be unnecessary as integrated areas from replicate G.C. samples generally agreed to within <1% for TBP, and <2% for CMPO. Samples were compared with external standards solutions of known (TBP) and (CMPO) in TCE and quantified by comparison with the standard. Mass balance for the analysis of CMPO and its degradation products in TRUEX solvent was at least 97% and for TBP >99% in the hydrolysis experiments. In the radiolysis experiments, mass balance was comparable to these values for low doses but got progressively worse at higher doses.

Distribution ratios for americium between degraded solvents and 0.01 M, 2.0 M HNO₃ (to simulate stripping and extraction stages in the process) were determined with tracer loading (²⁴¹Am) of the samples. The D_{Am} values were determined in both the water-washed and carbonate-scrubbed extractant solutions. The analytical procedure was as previously described (2).

RESULTS AND DISCUSSION

Figure 1 is a reproduction of the capillary gas chromatogram of TRUEX solvent at time zero, after 12 weeks hydrolysis, and after 32.0 Wh/L irradiation. While the same products are observed in both radiolysis and hydrolysis experiments, the relative yields of each differ. The only identified products from TBP are dibutyl phosphoric acid (HDBP) and relatively small amounts of monobutyl phosphoric acid (H₂MBP). A greater variety of degradation products is observed from CMPO. Neutral products include methyl-(octyl)(phenyl)phosphine oxide (MOP₂O) and octyl(phenyl)monoisobutyl CMPO (O₂M(iB)CMPO). The acidic degradation products are octyl(phenyl)phosphinic acid (H[O(*o*P)]) and octyl(phenyl)phosphorylacetic acid (H[O₂P(OAc)₂]). The probable interrelation of these degradation products is shown in Figure 2. This scheme is consistent with those previously postulated except for the addition of the intermediate dealkylation step to form O₂M(iB)CMPO. Separate experiments in which the degradation products MOP₂O and

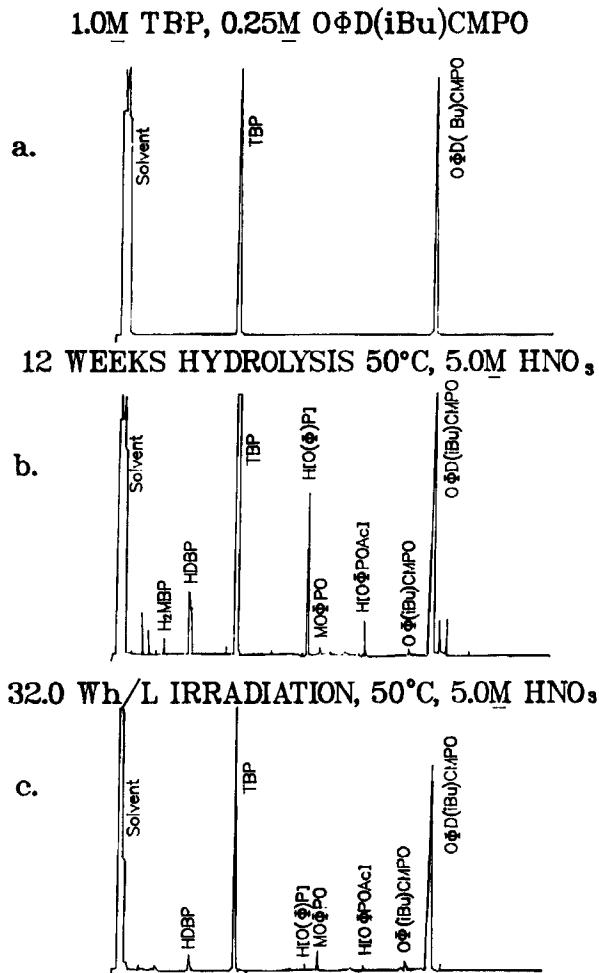


Fig. 1. Capillary gas chromatograms for TRUEX-TCE solutions (0.25 M CMPO, 1.0 M TBP in TCE): a. initial; b. after 12 weeks hydrolysis at 50°C in contact with 5.0 M HNO₃; c. after 32.0 Wh/L irradiation with ⁶⁰Co gamma rays at 50°C, 5.0 M HNO₃.

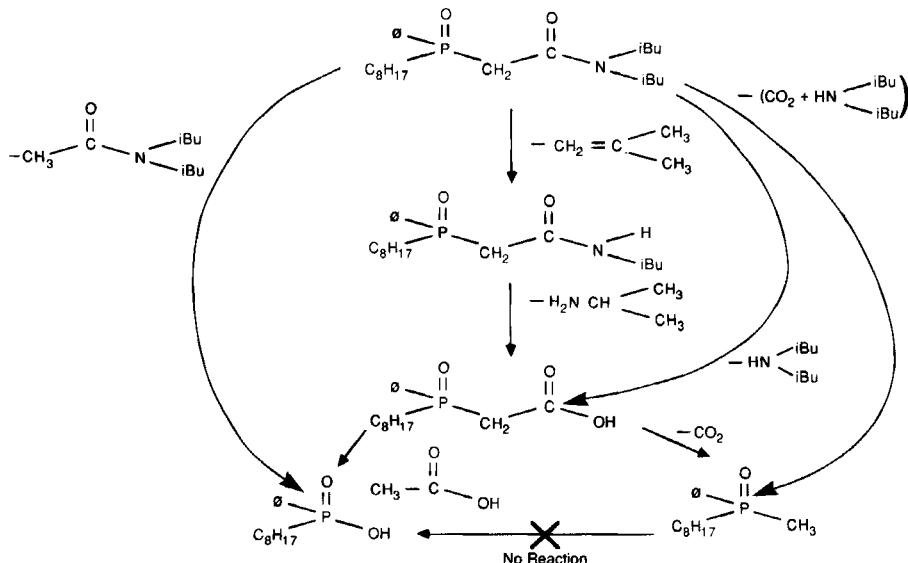


Fig. 2. $O\phi D(iB)CMPO$ degradation pathways.

$H[O(\phi)P]$ were contacted with 5.0 M HNO_3 for 6 weeks at 50°C indicated complete recovery of the starting materials, suggesting that they are terminal products and are not subject to further degradation under these conditions.

Hydrolysis: The summary of the chromatographic analyses for hydrolyzed TRUEX solvent is shown in Figure 3. The first order rate for formation of the acidic degradation products HDBP, $H[O(\phi)P]$, and $H[O\phi POAc]$ is high in the early stages of the experiment but decreases as the concentration of these species increases. No growth or decay of $MO\phi PO$ was observed in the course of these experiments. The average concentration of $MO\phi PO$ in the hydrolyzed samples is 0.0021 (± 0.0016) M, representing less than 1% of the initial concentration of CMPO, in contrast to previously reported results for its degradation in CCl_4 . Concentrations of both $O\phi D(iB)CMPO$ and TBP appear to decrease linearly as a function of contact time.

In the respective single solute systems (i.e. CMPO-TCE, TBP-TCE), a much slower rate of decomposition was observed for both CMPO and TBP. Least-squares analysis of the data using a first order expression indicates that the rate of hydrolysis of CMPO is a factor of 4.3 faster in the mixed solute system; that for TBP is a factor of 7.5 faster. The increased rate of decomposition in

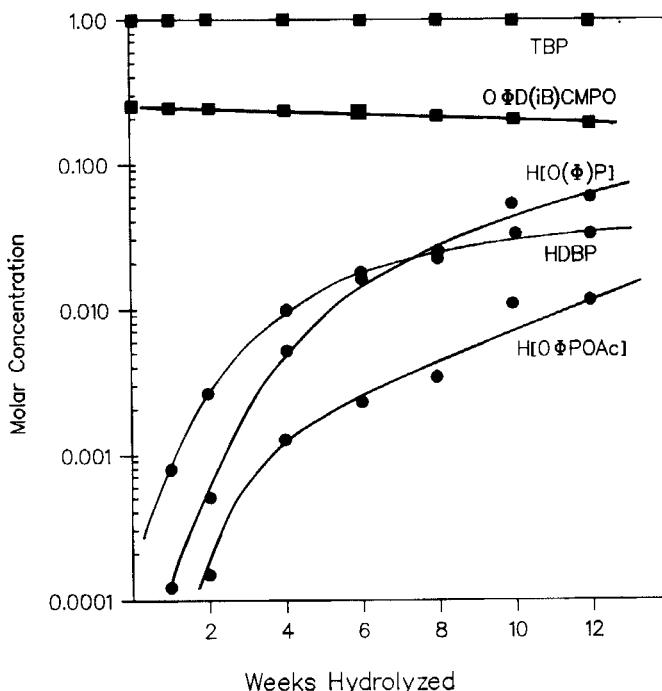


Fig. 3. Results of gas chromatographic analysis of hydrolyzed TRUEX-TCE solutions, $T = 50^\circ\text{C}$, $[\text{HNO}_3] = 5.00 \text{ M}$.

TRUEX process solvent is partly related to the organic phase $[\text{HNO}_3]$. The titrated nitric acid concentrations in the CMPO, TBP and TRUEX solutions (equilibrated with 5.0 M HNO_3) are 0.36 M, 0.89 M, and 1.02 M respectively. That the relationship is complex is shown by the observation that a 15% increase in $[\text{HNO}_3]$ (1.02/0.89) results in a 7.5 fold increase in the rate of decomposition of TBP, but a 2.8 fold increase in $[\text{HNO}_3]$ (1.02/0.36) is related to a 4.3 fold increase in CMPO degradation.

The effect of lower $[\text{HNO}_3]$ on the product distribution and degree of decomposition of CMPO and TBP in TRUEX process solvent is shown in Figure 4. Both the rate of decomposition of CMPO and the relative yield of $H[O(\Phi)P]$ increase dramatically at $[\text{HNO}_3] > 2.5 \text{ M}$. The relative yield of HDBP, in contrast, increases at the lower nitric acid concentrations then levels off at $[\text{HNO}_3] > 2.5 \text{ M}$, presumably as a result of susceptibility of HDBP to further degradation to $H_2\text{MBP}$ and $H_3\text{PO}_4$ at higher acidity.

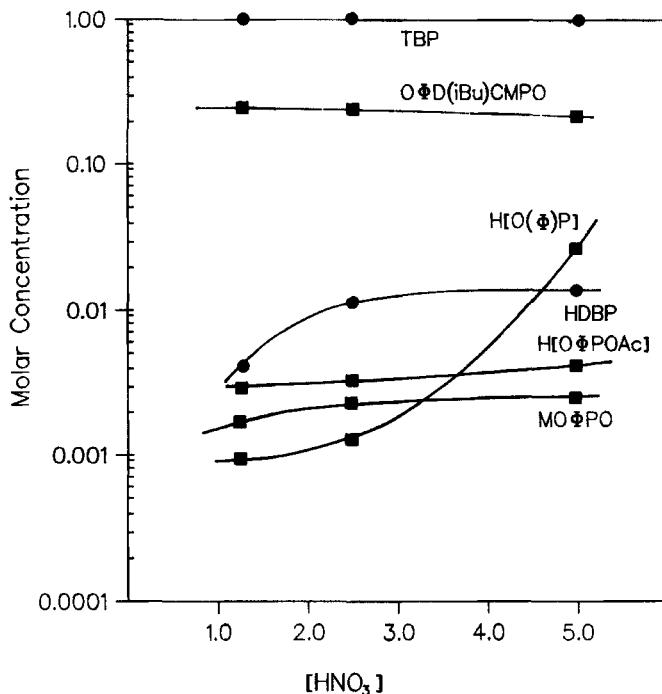


Fig. 4. Results of gas chromatographic analysis of hydrolyzed TRUEX-TCE solutions at 50°C as a function of [HNO₃].

D_{Am} values for TRUEX extraction from 2.0 M and 0.01 M HNO₃ are shown in Figure 5. The $D_{Am}^{2.0}$ values decrease with a less than second order CMPO extractant dependency and are slightly increased after a carbonate scrub of the solution. The reduced stoichiometry in degraded solutions is in accord with previous observations of this system (1,2). However, since MOΦPO is not an important degradation product, the previous explanation of partial replacement of CMPO by MOΦPO cannot apply in this case. The $D_{Am}^{0.01}$ values before and after carbonate washing indicate the deleterious effect of acidic degradation products on TRUEX solvent performance and the effectiveness of carbonate scrub in removing these products to restore the americium extraction performance of the system.

Radiolysis: Gas chromatographic analysis of the samples from replicate irradiations of TRUEX solutions at three different nitric acid concentrations and as a function of dose are shown in Figure 6. Irradiations of TBP-TCE and CMPO-TCE solutions gave

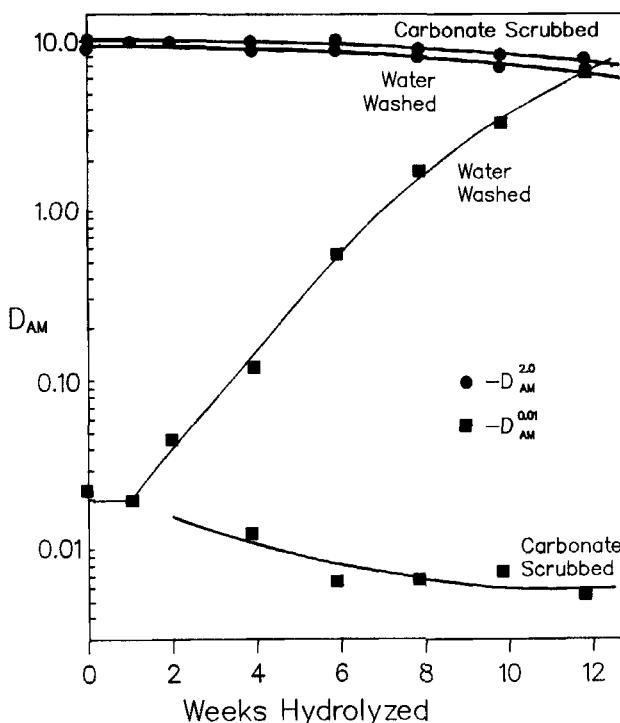


Fig. 5. Americium distribution ratios in hydrolyzed TRUEX-TCE solution before and after removal of acidic degradation products by carbonate scrub.

similar rates of decomposition and product distributions. Both CMPO and TBP mass balance are good at doses up to 18 Wh/L, but deteriorate with increasing dose to only 80% for CMPO and 90% for TBP at the maximum dose. The product distribution for those species identified in the GC analysis indicates HDBP as the principal TBP product and $\text{O}_{\text{P}}(\text{iB})\text{CMPO}$ as the dominant product from CMPO.

G values (molecules/100 ev) for the rate of disappearance of CMPO and TBP were calculated from linear (zero-order) fits of the data (Table 1). The relative uncertainty in these values is acceptable and within the broad limits of previously published G values for TBP. The tabulated values suggest a possible slight improvement in radiation stability for CMPO and TBP in TRUEX solvent over the single solute systems. It also appears that CMPO has greater radiation stability in TCE than in CCl_4 .

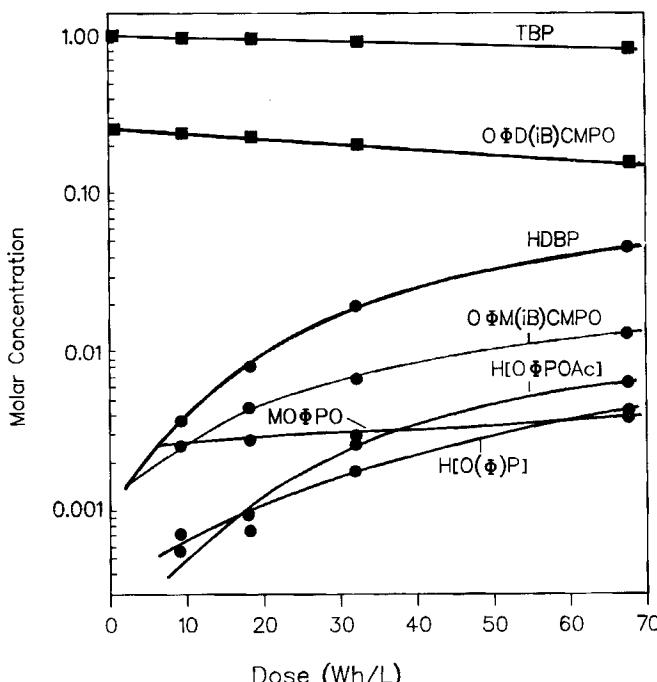


Fig. 6. Results of gas chromatographic analysis of radiolysed TRUEX-TCE solutions, $T = 50^\circ\text{C}$, $[\text{HNO}_3] = 1.25, 2.50, 5.00 \text{ M}$ (average for irradiations of TRUEX-TCE in contact with each).

Total acidity in each phase of the irradiated solutions, as determined by indicator titration with standard NaOH, is given in Table 2. The overall increase in acidity is significant and found primarily in the aqueous phase. 70-100% of the increase in aqueous acidity is due to HCl produced by the irradiation of TCE. A maximum of 7-10% of the aqueous acidity increase can be attributed to H_3PO_4 , H2MBP, and HDBP. 60-90% of the increased acidity in the organic phase is accounted for by the organic acids quantified in the gas chromatographic analyses.

The phosphorus concentration in the aqueous phase accounts for only 8-15% of the TBP and CMPO missing at high dose. The chromatograms of these highly irradiated solutions indicate the presence of numerous unidentifiable (i.e., low concentration) components, but total integrated intensity is insufficient to

TABLE 1.

G Values for Gamma Irradiation of TRUEX-TCE,
TBP-TCE, and CMPO-TCE

Solutions	Conditions	Yield	Ref.*
CMPO-TCE	5.0 <u>M</u> HNO ₃ , 0-32 Wh/L	G(-CMPO) = 5.21(±0.42)	pw.
CMPO-CCl ₄	5.0 <u>M</u> HNO ₃ , 47-97 Wh/L	G(-CMPO) = 7.4(±1.4)	2
CMPO-	5.0, 2.5, 1.25 <u>M</u> HNO ₃ , G(-CMPO) = 3.74(±0.36)		pw.
TRUEX (TCE)	0-68 Wh/L		
TBP-TCE	5.0 <u>M</u> HNO ₃ , 0-32 Wh/L	G(-TBP) = 9.2 (±3.0)	pw.
TBP-	5.0, 2.5, 1.25 <u>M</u> HNO ₃	G(-TBP) = 3.78(±0.63)	pw.
TRUEX (TCE)	0-68 Wh/L	G(HDBP) = 1.56(±0.08)	pw.
		G(total acid) = 18.0(±5.5)	pw.
		G(HCl) = 11.4(±2.0)	pw.
30%TBP	dry, 0.27-270 Wh/L	G(HDBP) = 18(±9)	4
(CCl ₄)			
TBP	neat-dry,	G(-TBP) = 5.5(±1)	4
	0.27-270 Wh/L		

pw.=present work

TABLE 2.

Titrated Acidity (Molar) for Irradiated TRUEX-TCE Samples

Sample ID	1.25 M	2.50 M	5.00 M
blank, aq.	0.95	1.91	3.95
blank, or.	0.30	0.59	1.05
blank, total	1.25	2.50	5.00
68.0 Wh/L, aq.	1.36	2.10	4.42
68.0 Wh/L, org.	0.43	0.69	1.11
68.0 Wh/L, total	1.79	2.79	5.53
increased total	0.54	0.29	0.53
aqueous P ^a	0.016	0.011	0.012
HCl ^b	0.33	0.24	0.31
org. acids ^c	0.074	0.093	0.050

^aPhosphorus in the aqueous phase by ICP analysis.^bRadiolysis product from TCE quantified gravimetrically by precipitation with Ag⁺.^cFrom gas chromatographic analysis.

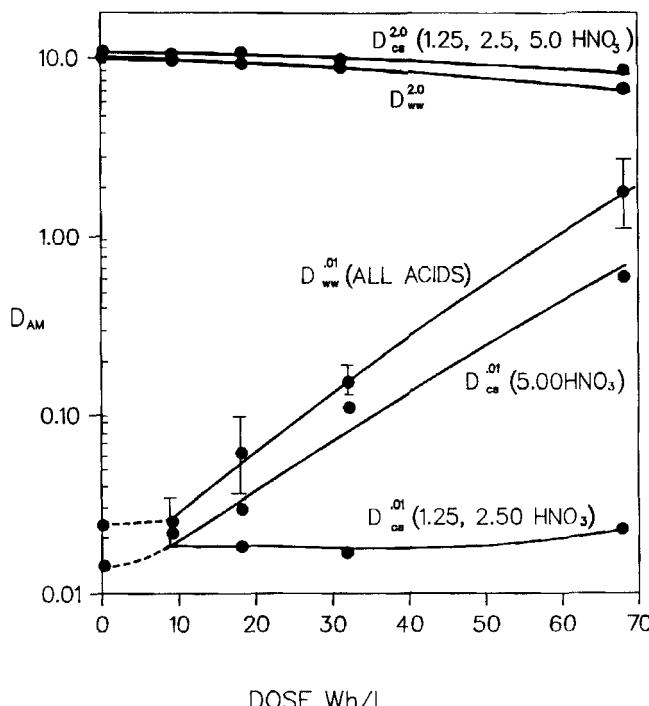


Fig. 7 Americium distribution ratios in radiolysed TRUEX-TCE solutions. $D_{Am}^{2.0}$ (carbonate scrubbed (CS) and water washed (WW)) and $D_{Am}^{0.01}$ (WW) are average values for solutions irradiated in the presence of 1.25, 2.50, and 5.00 M HNO₃. $D_{Am}^{0.01}$ (CS) values are for 5.00 M HNO₃ or averages of 1.25 and 2.50 M HNO₃ as noted.

account for all of the missing CMPO and TBP. The missing material may be polymeric species which do not exit the capillary column under the analytical conditions, or volatile species which pass through the column in the solvent peak. Previous investigations of TBP radiolysis have reported both polymeric and gaseous products (4).

Americium distribution ratios in the irradiated TRUEX solutions are shown in Figure 7. The $D_{Am}^{2.0}$ and $D_{Am}^{0.01}$ values are the average of results for TRUEX solutions contacted with the three nitric acid solutions. Despite the destruction of nearly 40% of the original CMPO in these samples after 68 Wh/L irradiation, little decline is observed in $D_{Am}^{2.0}$. After carbonate scrub $D_{Am}^{2.0}$

TABLE 3.

Normalized Product Distribution for Degradation of CMPO at
68 Wh/L or 12 Weeks Hydrolysis

CMPO-TRUEX (TCE)

	HYDROLYSIS	RADIOLYSIS
5.0 M HNO₃		
80% H[O(ϕ)P], 13% H[OϕPOAc], 8% MOϕPO	15% OϕM(iB)CMPO, 6% MOϕPO, 4% H[O(ϕ)P], 69% unknown	
2.5 M HNO₃		
18% H[O(ϕ)P], 50% H[OϕPOAc], 32% MOϕPO	25% OϕM(iB)CMPO, 12% MOϕPO, 4% H[O(ϕ)P], 50% unknown	
1.25 M HNO₃		
17% H[O(ϕ)P], 52% H[OϕPOAc] 30% MOϕPO	15% OϕM(iB)CMPO, 7% MOϕPO, 3% H[O(ϕ)P], 69% unknown	

CMPO-TCE

	HYDROLYSIS	RADIOLYSIS
5.00 M HNO₃		
40% MOϕPO, 50% H[OϕPOAc]	15% OϕM(iB)CMPO, 10% MOϕPO, 70% unknown	

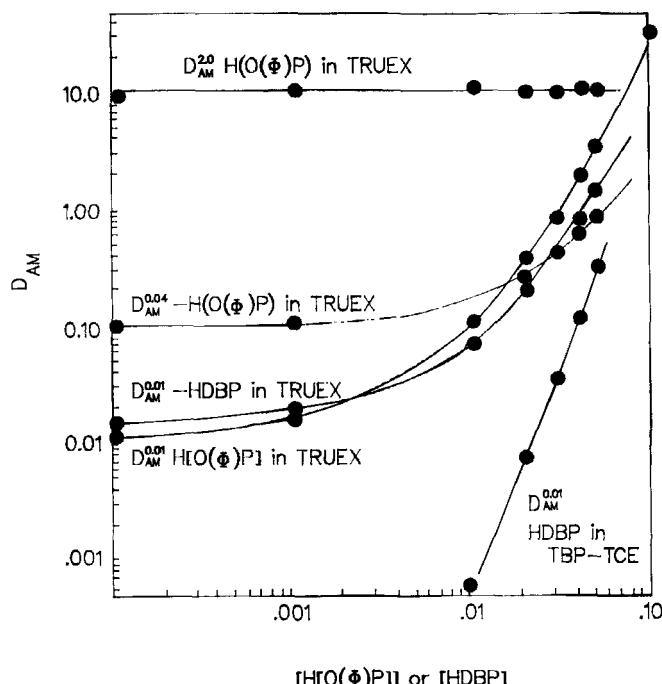


Fig. 8. Americium distribution ratios in synthetic solutions. TRUEX is 0.25 M CMPO, 1.0 M TBP in TCE.

exhibits slightly less than first power dependence on [CMPO], implying that an unidentified degradation product or some more subtle alteration of the medium is acting to maintain D_{Am} approximately constant.

A rise is observed in $D_{Am}^{0.01}$ in these samples, though the increase is less than was observed in the 12 week hydrolysis experiments. This latter effect is probably the result of the lowered yield of $H[O(\phi)P]$ in the irradiated solutions. The carbonate scrub procedure effectively lowers the $D_{Am}^{0.01}$ values in the solutions which were equilibrated with 1.25 M and 2.5 M HNO_3 , but does not completely restore the $D_{Am}^{0.01}$ for the solution equilibrated with 5.0 M HNO_3 .

Correlation between hydrolysis and radiolysis: The normalized yields (to 100% of degraded CMPO) of the various CMPO degradation products are different for hydrolytic and radiolytic decomposition and for CMPO-TCE vs. TRUEX-TCE (Table 3). The highest % yield of

TABLE 4.

H[O(ϕ)P], HDBP Distribution Ratios Between TRUEX-TCE
and Aqueous Carbonate Solutions

[Na ₂ CO ₃]	D(H[O(ϕ)P])	D(HDBP)
0.0625	0.012	<1E-4
0.125	0.013	7.4E-4
0.250	0.018	8.3E-4
0.500	0.018	3.9E-4

acidic degradation products occurs in TRUEX-TCE hydrolyzed with 5.0 M HNO₃, in which the organic phase concentration of HNO₃ is greatest. A decrease in [HNO₃] lowers the relative yield of H[O(ϕ)P] dramatically. The [HNO₃], however, does not effect the distribution of products in the radiolytic degradation of CMPO. Even absolute yields of identified radiolysis products of CMPO are nearly identical in CMPO-TCE and TRUEX-TCE independent of the nitric acid concentration.

It is reasonable to assume that the increase observed for D_{Am}^{0.01} is primarily a result of the presence of HDBP and H[O(ϕ)P] in the degraded TRUEX solution. Except for the solution radiolyzed in contact with 5.0 M HNO₃, removal of these acids by carbonate scrub restored low values for D_{Am}^{0.01}. Figure 8 shows D_{Am} values for synthetic solutions of H[O(ϕ)P] and HDBP in 0.25 M CMPO - 1.0 M TBP-TCE. At [H[O(ϕ)P]] or [HDBP] greater than 0.01 M, D_{Am}^{0.01} values increase with a second power extractant dependency. Using these figures as calibration curves, D_{Am} values for degraded TRUEX solvent were calculated as an algebraic mean of the expected D_{Am} values for extraction by H[O(ϕ)P] and HDBP. Agreement between calculated and observed D_{Am} values was fair to good for both hydrolyzed and radiolysed solutions. Note also that at 0.04 M HNO₃ (a probable acidity for back extraction under process applications) the H[O(ϕ)P] extractant dependency for D_{Am} is reduced to 1 or less. At 2.0 M HNO₃, H[O(ϕ)P] has no influence on D_{Am}.

In addition to investigations outlined above which suggest adequate removal of acidic degradation products by carbonate scrub under most conditions, we have determined the distribution ratios for $H[O(\phi)P]$, HDBP, and MO ϕ PO between TRUEX - TCE and aqueous carbonate solutions. The distribution ratios were measured by gas chromatographic analysis of derivatized samples of the organic solutions of the acids (after equilibration with aqueous Na_2CO_3 solutions), and $CHCl_3$ extracts of the acidified aqueous washes. Distribution ratios for HDBP and $H[O(\phi)P]$ were determined at 0.0625, 0.125, 0.250, and 0.50 M sodium carbonate, with results summarized in Table 4.

The distribution coefficient of each is low enough that two successive contacts with aqueous sodium carbonate solution will remove >99% of the material present. In contrast, MO ϕ PO is removed from 1 M TBP/TCE upon carbonate scrub by only a trivial amount as indicated by the measured distribution coefficient of $490(\pm 17)$ for $[Na_2CO_3] = 0.25 M$.

SUMMARY AND CONCLUSIONS

These results allow the following conclusions to be drawn:

1. Hydrolysis and radiolysis produce the same CMPO degradation products in different relative yields. Acidic degradation products are favored to a greater degree in hydrolysis and increase with the concentration of HNO_3 . It is also noteworthy that both CMPO and TBP are degraded more severely by hydrolysis in TRUEX solvent than in either as a single solute system, but such differentiation is not observed in radiolysis of these same solutions. Irradiation of TRUEX-TCE to relatively high total dosage results in the production of unidentified CMPO degradation products.
2. The increase in D_{Am} at 0.01 M HNO_3 is due to the presence of both $H[O(\phi)P]$ and HDBP. In radiolyzed samples an additional unidentified component may affect D_{Am} at high absorbed dose.
3. Contact with sodium carbonate solutions effectively removes major acidic degradation products and restores the original D_{Am} values of TRUEX-TCE process solvent in hydrolyzed samples but is less effective in highly irradiated solutions.
4. The treatment received by these solutions in these experiments is more severe than the process solvent is likely to see under actual process applications (e.g., higher nitric acid concentration, 50°C, irradiation equivalent to 70 years exposure when used to decontaminate Pu scrap waste). Given the uncertainties in making extrapolations from limited information, it seems unlikely that either hydrolysis or radiolysis will have a significant deleterious effect on the americium extraction performance of TRUEX-TCE process solvent in any presently anticipated applications.

ACKNOWLEDGMENT

Dosimetry for radiolysis studies courtesy J. Van Loon, ANL Chemistry Division irradiation facility. ICP analysis of irradiated solutions courtesy E. Huff, ANL Chemistry Division, Analytical Services. GC-mass spectral analysis courtesy Dr. R. Winans, Mr. R. Scott, ANL Chemistry Division. Funding provided for this work by Division Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy, under contract number W-31-109-ENG-38 and Westinghouse Hanford Company.

REFERENCES

1. Leonard, R. A., G. F. Vandegrift, D. G. Kalina, D. F. Fischer, R. W. Bane, L. Burris, E. P. Horwitz, R. Chiarizia, H. Diamond, Argonne National Laboratory Report ANL-85-45 (1985).
2. Chiarizia R. and E. P. Horwitz, Solvent Extr. Ion Exch. 4, 677-723 (1986).
3. Gatrone, R. C. , L. Kaplan, E. P. Horwitz, Solvent Extr. Ion Exch. 5(6), (1987).
4. Davis, Jr. W., "Radiolytic Behavior," in "Science and Technology of Tributylphosphate," Vol. 1, W. W. Schulz and J. D. Navratil, Eds., CRC Press Inc., Boca Raton, Florida, pp. 221-266 (1984).